23 research outputs found

    A receptor-based analysis of local ecosystems in the human brain.

    Get PDF
    BackgroundAs a complex system, the brain is a self-organizing entity that depends on local interactions among cells. Its regions (anatomically defined nuclei and areas) can be conceptualized as cellular ecosystems, but the similarity of their functional profiles is poorly understood. The study used the Allen Human Brain Atlas to classify 169 brain regions into hierarchically-organized environments based on their expression of 100 G protein-coupled neurotransmitter receptors, with no a priori reference to the regions' positions in the brain's anatomy or function. The analysis was based on hierarchical clustering, and multiscale bootstrap resampling was used to estimate the reliability of detected clusters.ResultsThe study presents the first unbiased, hierarchical tree of functional environments in the human brain. The similarity of brain regions was strongly influenced by their anatomical proximity, even when they belonged to different functional systems. Generally, spatial vicinity trumped long-range projections or network connectivity. The main cluster of brain regions excluded the dentate gyrus of the hippocampus. The nuclei of the amygdala formed a cluster irrespective of their striatal or pallial origin. In its receptor profile, the hypothalamus was more closely associated with the midbrain than with the thalamus. The cerebellar cortical areas formed a tight and exclusive cluster. Most of the neocortical areas (with the exception of some occipital areas) clustered in a large, statistically well supported group that included no other brain regions.ConclusionsThis study adds a new dimension to the established classifications of brain divisions. In a single framework, they are reconsidered at multiple scales-from individual nuclei and areas to their groups to the entire brain. The analysis provides support for predictive models of brain self-organization and adaptation

    Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    Get PDF
    BACKGROUND: A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. RESULTS: The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. CONCLUSION: At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT(4 )receptor gene) based on currently available clinical and experimental studies

    An experimental platform for stochastic analyses of single serotonergic fibers in the mouse brain

    Get PDF
    The self-organization of the serotonergic matrix, a massive axon meshwork in all vertebrate brains, is driven by the structural and dynamical properties of its constitutive elements. Each of these elements, a single serotonergic axon (fiber), has a unique trajectory and can be supported by a soma that executes one of the many available transcriptional programs. This “individuality” of serotonergic neurons necessitates the development of specialized methods for single-fiber analyses, both at the experimental and theoretical levels. We developed an integrated platform that facilitates experimental isolation of single serotonergic fibers in brain tissue, including regions with high fiber densities, and demonstrated the potential of their quantitative analyses based on stochastic modeling. Single fibers were visualized using two transgenic mouse models, one of which is the first implementation of the Brainbow toolbox in this system. The trajectories of serotonergic fibers were automatically traced in the three spatial dimensions with a novel algorithm, and their properties were captured with a single parameter associated with the directional von Mises-Fisher probability distribution. The system represents an end-to-end workflow that can be imported into various studies, including those investigating serotonergic dysfunction in brain disorders. It also supports new research directions inspired by single-fiber analyses in the serotonergic matrix, including supercomputing simulations and modeling in physics

    Reflected fractional Brownian motion in one and higher dimensions

    Get PDF
    Fractional Brownian motion (FBM), a non-Markovian self-similar Gaussian stochastic process with long-ranged correlations, represents a widely applied, paradigmatic mathematical model of anomalous diffusion. We report the results of large-scale computer simulations of FBM in one, two, and three dimensions in the presence of reflecting boundaries that confine the motion to finite regions in space. Generalizing earlier results for finite and semi-infinite one-dimensional intervals, we observe that the interplay between the long-time correlations of FBM and the reflecting boundaries leads to striking deviations of the stationary probability density from the uniform density found for normal diffusion. Particles accumulate at the boundaries for superdiffusive FBM while their density is depleted at the boundaries for subdiffusion. Specifically, the probability density PP develops a power-law singularity, PrκP\sim r^\kappa, as function of the distance rr from the wall. We determine the exponent κ\kappa as function of the dimensionality, the confining geometry, and the anomalous diffusion exponent α\alpha of the FBM. We also discuss implications of our results, including an application to modeling serotonergic fiber density patterns in vertebrate brains.Comment: 14 pages, 20 figures included, final version as publishe

    Memory-multi-fractional Brownian Motion With Continuous Correlations

    Get PDF
    We propose a generalization of the widely used fractional Brownian motion (FBM), memory-multi-FBM (MMFBM), to describe viscoelastic or persistent anomalous diffusion with time-dependent memory exponent α(t) in a changing environment. In MMFBM the built-in, long-range memory is continuously modulated by α(t). We derive the essential statistical properties of MMFBM such as its response function, mean-squared displacement (MSD), autocovariance function, and Gaussian distribution. In contrast to existing forms of FBM with time-varying memory exponents but a reset memory structure, the instantaneous dynamic of MMFBM is influenced by the process history, e.g., we show that after a steplike change of α(t) the scaling exponent of the MSD after the α step may be determined by the value of α(t) before the change. MMFBM is a versatile and useful process for correlated physical systems with nonequilibrium initial conditions in a changing environment

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
    corecore